Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38573002

RESUMO

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

2.
Cell Cycle ; : 1-10, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512812

RESUMO

OBJECTIVE: The aim of this study was to explore the effects of Ninjurin 2 (NINJ2) polymorphisms on susceptibility to coronary heart disease (CHD). METHODS: We conducted a case-control study with 499 CHD cases and 505 age and gender-matched controls. Five single nucleotide polymorphisms (SNPs) in NINJ2 (rs118050317, rs75750647, rs7307242, rs10849390, and rs11610368) were genotyped by the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis to assess the association of NINJ2 polymorphisms and CHD risk-adjusted for age and gender. What's more, risk genes and molecular functions were screened via protein-protein interaction (PPI) network and functional enrichment analysis. RESULTS: Rs118050317 in NINJ2 significantly increased CHD risk in people aged more than 60 years and women. Rs118050317 and rs7307242 had strong relationships with hypertension risk in CHD patients. Additionally, rs75750647 exceedingly raised diabetes risk in cases under multiple models, whereas rs10849390 could protect CHD patients from diabetes in allele, homozygote, and additive models. We also observed two blocks in NINJ2. Further interaction network and enrichment analysis showed that NINJ2 played a greater role in the pathogenesis and progression of CHD. CONCLUSION: Our results suggest that NINJ2 polymorphisms are associated with CHD risk.

3.
Adv Mater ; : e2313532, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386402

RESUMO

Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.

4.
Front Med (Lausanne) ; 11: 1235335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414619

RESUMO

Background: The effect of different non-cardiac surgical methods on islet and renal function remains unclear. We conducted a preliminary investigation to determine whether different surgical methods affect islet function or cause further damage to renal function. Methods: In this prospective cohort study, the clinical data of 63 adult patients who underwent non-cardiac surgery under general anesthesia were evaluated from February 2019 to January 2020. Patients were divided into the abdominal surgery group, the laparoscopic surgery group, and the breast cancer surgery group. The primary outcome was the difference between the effects of different surgical methods on renal function. Results: Islet and renal function were not significantly different between the groups. The correlation analysis showed that hematocrit (HCT) and hemoglobin (HB) were negatively correlated with fasting plasma glucose (FPG) (p < 0.05), MAP was positively correlated with C-peptide (p < 0.05), and HCT and Hb were positively correlated with serum creatinine (SCr) (p < 0.05). Fasting insulin (FINS) and C-peptide were negatively correlated with SCr (p < 0.05), and the homeostatic model assessment of insulin resistance (HOMA-IR) was positively correlated with SCr (p < 0.05). FINS, C-peptide, HOMA-IR, and the homeostatic model assessment of ß-cell function (HOMA-ß) were positively correlated with cystatin C (Cys C) (p < 0.05). Conclusion: FINS, C-peptide, and HOMA-IR had positive effects on beta-2-microglobulin (ß2-MG). FINS, C-peptide, and HOMA-IR were positively correlated with Cys C and ß2-Mg. While FINS and C-peptide were negatively correlated with SCr, HOMA-IR was positively correlated with SCr.

5.
Gastric Cancer ; 27(2): 324-342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310631

RESUMO

Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1ß and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Receptor 6 Toll-Like/metabolismo , Gerbillinae , Neoplasias Gástricas/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/complicações , Mucosa Gástrica/metabolismo
6.
Animal Model Exp Med ; 7(1): 48-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372486

RESUMO

BACKGROUND: The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis. However, the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle. Additionally, the lack of an evaluation system for the cerebral ischemia/reperfusion (I/R) model of gerbils has shackled the application of this model. METHODS: We created a symptom-oriented principle and detailed neurobehavioral scoring criteria. At different time points of reperfusion, we analyzed the alteration in locomotion by rotarod test and grip force score, infarct volume by triphenyltetrazolium chloride (TTC) staining, neuron loss using Nissl staining, and histological characteristics using hematoxylin-eosin (H&E) straining. RESULTS: With a successful model rate of 56%, 32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury, and the mortality rate in the male gerbils was significantly higher than that in the female gerbils. The successfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion; formed obvious infarction; exhibited typical pathological features, such as tissue edema, neuronal atrophy and death, and vacuolated structures; and were partially recovered with the extension of reperfusion time. CONCLUSION: This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model, which could provide a new cerebral I/R model of gerbils with more practical applications.


Assuntos
Isquemia Encefálica , Animais , Masculino , Feminino , Gerbillinae/fisiologia , Isquemia Encefálica/patologia , Infarto Cerebral/patologia , Neurônios/patologia , Reperfusão
7.
Phytother Res ; 38(2): 1089-1103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168755

RESUMO

Autism spectrum disorder (ASD) is a multifaceted neuropsychiatric condition for which effective drug therapy for core clinical symptoms remains elusive. Lotusine, known for its neuroprotective properties in the treatment of neurological disorders, holds potential in addressing ASD. Nevertheless, its specific efficacy in ASD remains uncertain. This study aims to investigate the therapeutic potential of lotusine in ASD and elucidate the underlying molecular mechanisms. We induced an ASD mouse model through intracerebroventricular-propionic acid (ICV-PPA) injection for 7 days, followed by lotusine administration for 5 days. The efficacy of lotusine was evaluated through a battery of behavioral tests, including the three-chamber social test. The underlying mechanisms of lotusine action in ameliorating ASD-like behavior were investigated in the medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings, western blotting, immunofluorescence staining, molecular docking, and cellular thermal shift assay. The efficacy and mechanisms of lotusine were further validated in vitro. Lotusine effectively alleviated social deficits induced by ICV-PPA injection in mice by counteracting the reduction in miniature excitatory postsynaptic current frequency within the mPFC. Moreover, lotusine enhanced neuronal activity and ameliorated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysfunction in ICV-PPA infusion mice by upregulating c-fos, p-GluA1 Ser 845, and p-GluA1 Ser 831 protein levels within the mPFC. Our findings also suggest that lotusine may exert its effects through modulation of the D1 dopamine receptor (DRD1). Furthermore, the rescuing effects of lotusine were nullified by a DRD1 antagonist in PC12 cells. In summary, our results revealed that lotusine ameliorates ASD-like behavior through targeted modulation of DRD1, ultimately enhancing excitatory synaptic transmission. These findings highlight the potential of lotusine as a nutritional supplement in the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Dopamina , Isoquinolinas , Propionatos , Ratos , Camundongos , Animais , Dopamina/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Simulação de Acoplamento Molecular , Receptores de Dopamina D1/metabolismo , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
8.
Small Methods ; 8(2): e2300397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37204077

RESUMO

Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.

9.
Sci Rep ; 13(1): 18877, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914860

RESUMO

The scanning vibration mirror system drives the scanning mirror fixed to it through the oscillation of the motor shaft, so as to control the reflected light to form a dynamic variable light path. The vibration mirror scanning system has higher controllability than the fixed optical path system and has been widely used.In this dissertation, after establishing the models of the core components of the scanning vibration mirror system, the mathematical model of the whole system is established.On this basis, simulation and theoretical analysis show that the system has some shortcomings, such as small bandwidth, low dynamic tracking accuracy, and the comprehensive dynamic performance of the system is easily affected by the input of external interference branches. A series correction controller and three closed-loop controller are designed for the above problems, respectively, and the control effects of the two controllers on the scanning vibration mirror system are studied through simulation experiments. By comparing the output response results of the system under the action of sinusoidal signals of different frequencies, it can be seen that the comprehensive effect of the three closed-loop controllers is better. Under the action of step signals, the overshoot of the three closed-loop correction controller correction system is 21.5% higher than that of the series controller correction system, the adjustment time is 82.7% less, and the steady-state error is significantly smaller. Therefore, it indicates that the three closed-loop correction system has good rapidity and steady-state accuracy.

10.
Small ; : e2308216, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946696

RESUMO

The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71 BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71 BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71 BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71 BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71 BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.

11.
FASEB J ; 37(10): e23170, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37676718

RESUMO

Small cell lung cancer (SCLC) is one of the most malignant tumors that has an extremely poor prognosis. RNA-binding protein (RBP) and long noncoding RNA (lncRNA) have been shown to be key regulators during tumorigenesis as well as lung tumor progression. However, the role of RBP ELAVL4 and lncRNA LYPLAL1-DT in SCLC remains unclear. In this study, we verified that lncRNA LYPLAL1-DT acts as an SCLC oncogenic lncRNA and was confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT negatively regulates the expression of miR-204-5p, leading to the upregulation of PFN2, thus, promoting SCLC cell proliferation, migration, and invasion. ELAVL4 has been shown to enhance the stability of LYPLAL1-DT and PFN2 mRNA. Our study reveals a regulatory pathway, where ELAVL4 stabilizes PFN2 and LYPLAL1-DT with the latter further increasing PFN2 expression by blocking the action of miR-204-5p. Upregulated PFN2 ultimately promotes tumorigenesis and invasion in SCLC. These findings provide novel prognostic indicators as well as promising new therapeutic targets for SCLC.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Humanos , RNA Longo não Codificante/genética , Profilinas/genética , Carcinoma de Pequenas Células do Pulmão/genética , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteína Semelhante a ELAV 4
12.
Patient Prefer Adherence ; 17: 2227-2235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701426

RESUMO

Background: Our previous study demonstrated that digital diabetes care model (DDCM) created by multidisciplinary care team (MDCT) can improve glycemic control for patients with diabetes than usual care. Therefore, we aimed to explore long-term glycemic control with DDCM and influencing factors in type 2 diabetic cohort, in order to make a portrait for diabetes with goal-achieved HbA1c in clinics. Methods: A total of 1198 outpatients with type 2 diabetes using DDCM for at least 12 months were recruited as a cohort. Medical records and specific DDCM indexes were collected. The influencing factors for glycemic control were explored by multivariate logistic regression analysis, followed by an internal and external validation. Results: A total of 887 patients were finally included. HbA1c target-achieving rate was increased from 39.83% at baseline to 71.79% after 3-month follow-up. A shorter duration of diabetes, more frequent self-monitoring of blood glucose, lower HbA1c level at baseline, and less frequent emergency out-of-hospital follow-ups were influencing factors for HbA1c <7% at 12-month follow-up. AUC of the prediction model was 0.790, with a sensitivity of 69.7% and specificity of 76.1%. Internal and external validation in patients using the DDCM monitored by MDCT indicated that the DDCM was robust (AUC =0.783 and 0.723, respectively). Conclusion: Our findings made a portrait for T2DM with goal-achieved HbA1c in our DDCM. It is important to recognize associated factors for health providers to make personalized intervention in clinical practice.

13.
Sci Transl Med ; 15(711): eadd9990, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647386

RESUMO

Myeloid cells in the tumor microenvironment (TME) can exist in immunosuppressive and immunostimulatory states that impede or promote antitumor immunity, respectively. Blocking suppressive myeloid cells or increasing stimulatory cells to enhance antitumor immune responses is an area of interest for therapeutic intervention. Triggering receptor expressed on myeloid cells-1 (TREM1) is a proinflammatory receptor that amplifies immune responses. TREM1 is expressed on neutrophils, subsets of monocytes and tissue macrophages, and suppressive myeloid populations in the TME, including tumor-associated neutrophils, monocytes, and tumor-associated macrophages. Depletion or inhibition of immunosuppressive myeloid cells, or stimulation by TREM1-mediated inflammatory signaling, could be used to promote an immunostimulatory TME. We developed PY159, an afucosylated humanized anti-TREM1 monoclonal antibody with enhanced FcγR binding. PY159 is a TREM1 agonist that induces signaling, leading to up-regulation of costimulatory molecules on monocytes and macrophages, production of proinflammatory cytokines and chemokines, and enhancement of T cell activation in vitro. An antibody against mouse TREM1, PY159m, promoted antitumor efficacy in syngeneic mouse tumor models. These results suggest that PY159-mediated agonism of TREM1 on tumoral myeloid cells can promote a proinflammatory TME and offer a promising strategy for immunotherapy.


Assuntos
Monócitos , Células Mieloides , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Imunossupressores , Macrófagos , Receptor Gatilho 1 Expresso em Células Mieloides
14.
Adv Mater ; : e2300259, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961263

RESUMO

Organic solar cells (OSCs) now approach power conversion efficiencies of 20%. However, in order to enter mass markets, problems in upscaling and operational lifetime have to be solved, both concerning the connection between processing conditions and active layer morphology. Morphological studies supporting the development of structure-process-property relations are time-consuming, complex, and expensive to undergo and for which statistics, needed to assess significance, are difficult to be collected. This work demonstrates that causal relationships between processing conditions, morphology, and stability can be obtained in a high-throughput method by combining low-cost automated experiments with data-driven analysis methods. An automatic spectral modeling feeds parametrized absorption data into a feature selection technique that is combined with Gaussian process regression to quantify deterministic relationships linking morphological features and processing conditions with device functionality. The effect of the active layer thickness and the morphological order is further modeled by drift-diffusion simulations and returns valuable insight into the underlying mechanisms for improving device stability by tuning the microstructure morphology with versatile approaches. Predicting microstructural features as a function of processing parameters is decisive know-how for the large-scale production of OSCs.

15.
Cell Death Dis ; 14(1): 18, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635272

RESUMO

Acute kidney injury (AKI) is one of the serious clinical syndromes with high morbidity and mortality. Despite substantial progress in understanding the mechanism of AKI, no effective drug is available for treatment or prevention. In this study, we identified that a ligand-activated transcription factor aryl hydrocarbon receptor (AhR) was abnormally increased in the kidneys of cisplatin-induced AKI mice or tubular epithelial TCMK-1 cells. The AhR inhibition by BAY2416964 and tubular conditional deletion both alleviated cisplatin-induced kidney dysfunction and tubular injury. Notably, inhibition of AhR could improve cellular senescence of injured kidneys, which was indicated by senescence-associated ß-galactosidase (SA-ß-gal) activity, biomarker p53, p21, p16 expression, and secretory-associated secretory phenotype IL-1ß, IL-6 and TNFα level. Mechanistically, the abnormal AhR expression was positively correlated with the increase of a methyltransferase EZH2, and AhR inhibition suppressed the EZH2 expression in cisplatin-injured kidneys. Furthermore, the result of ChIP assay displayed that EZH2 might indirectly interact with AhR promoter region by affecting H3K27me3. The direct recruitment between H3K27me3 and AhR promoter is higher in the kidneys of control than that of cisplatin-treated mice, suggesting EZH2 reversely influenced AhR expression through weakening H3K27me3 transcriptional inhibition on AhR promoter. The present study implicated that AhR and EZH2 have mutual regulation, which further accelerated tubular senescence in cisplatin-induced AKI. Notably, the crucial role of AhR is potential to become a promising target for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Proteína Potenciadora do Homólogo 2 de Zeste , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Senescência Celular , Cisplatino/efeitos adversos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
16.
Environ Technol ; 44(26): 3975-3987, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35549986

RESUMO

After fermentation, activated sludge contains many acid-producing bacteria and their metabolites, which have a good reducing effect. Various active groups (e.g., hydroxyl, amino, carboxyl, and phosphate) on microbial cell surfaces can adsorb heavy metals through complexation or chelation, forming heavy metal precipitates and thereby reducing the toxicity of heavy metals. However, the effects and mechanisms of using sludge after anaerobic fermentation to remove Cr(VI) are unclear, such as the dominance of direct versus indirect biological reduction, the contribution of abiotic effects, and the influence of fermentation conditions. This paper compares Cr(VI) removal in fermented and unfermented sludges. After fermentation for 24 h, 99.9% of the Cr(VI) (50 mg/L) in anaerobic sludge was removed within 7 h, which was twice the rate in unfermented activated sludge. A series of comparative experiments demonstrated that Cr(VI) removal primarily occurred through biological effects (about 92%), which included biological reduction and biosorption. 16SrRNA gene sequencing revealed that Cr(VI) transformation primarily occurred through direct biological reduction, with the related genera being Trichococcus, Acetobacter, Aeromonas, and Tolumonas. Fourier-transform infrared (FTIR) spectroscopy results showed that the C = O and C-O functionalities on sludge were likely involved in the Cr(VI) conversion. Majority of the Cr(VI) in the system was reduced to Cr(III) and existed in the suspension, with a small amount deposited on the sludge surface. The X-ray photoelectron spectroscopy (XPS) results indicated that the majority of Cr was present as reduced Cr(III) on the sludge. These results demonstrate that after fermentation in an aqueous environment, activated sludge is an effective medium for the remediation of Cr(VI). These results are useful for designing a green and sustainable bioreduction system for the remediation of Cr(VI)-polluted water.


Assuntos
Metais Pesados , Esgotos , Esgotos/microbiologia , Fermentação , Anaerobiose , Cromo/química , Adsorção
17.
J Phys Chem Lett ; 13(51): 11974-11981, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36535016

RESUMO

Voltage losses are one of the main obstacles for further improvement in the power conversion efficiency of organic solar cells. In this work, we investigate the effect of thermal stress on voltage losses in various material systems by multiple spectroscopic measurements on both devices and thin films. The energetics of nonfullerene small molecules are more readily altered under thermal stress compared to all-polymer and fullerene-based systems, thereby strongly affecting open-circuit voltage. These energetics variations correlate with the glass transition of respective materials. While nonfullerene small molecular acceptor systems exhibit both dynamic and static disorders which can be restrained in annealed films, all-polymeric systems exhibit dominated static disorders, which are also stable against thermal stress. The much higher voltage losses in fullerene-based systems compared to the other two counterparts are mainly due to the losses from device band gap to charge transfer states and the high nonradiative recombination.

18.
Nanomicro Lett ; 15(1): 23, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580117

RESUMO

After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.

19.
Front Neurol ; 13: 952843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388233

RESUMO

Objectives: This study aimed to develop a score including novel putative predictors for predicting the risk of sICH and outcomes after thrombolytic therapy with intravenous (IV) recombinant tissue-type plasminogen activator (r-tPA) in acute ischemic stroke patients. Methods: All patients with acute ischemic stroke treated with IV r-tPA at three university-based hospitals in Chongqing, China, from 2014 to 2019 were retrospectively studied. Potential risk factors associated with sICH (NINDS criteria) were determined with multivariate logistic regression, and we developed our score according to the magnitude of logistic regression coefficients. The score was validated in another independent cohort. Area under the receiver operating characteristic curve (AUC-ROC) was used to assess the performance of the score. Calibration was evaluated using the Hosmer-Lemeshow goodness-of-fit method. Results: The SON2A2 score (0 to 8 points) consisted of history of smoking (no = 1, yes = 0, ß = 0.81), onset-to-needle time (≥3.5 = 1,<3.5=0, ß = 0.74), NIH Stroke Scale on admission (>10 = 2, ≤10 = 0, ß = 1.22), neutrophil percentage (≥80.0% = 1, <80% = 0, ß = 0.81), ASPECT score (≤11 = 2, >11 = 0, ß = 1.30), and age (>65 years = 1, ≤65 years = 0, ß = 0.89). The SON2A2 score was strongly associated with sICH (OR 1.98; 95%CI 1.675-2.34) and poor outcomes (OR 1.89; 95%CI 1.68-2.13). AUC-ROC in the derivation cohort was 0.82 (95%CI 0.77-0.86). Similar results were obtained in the validation cohort. The Hosmer-Lemeshow test revealed that predicted and observed event rates in derivation and validation cohorts were very close. Conclusion: The SON2A2 score is a simple, efficient, quick, and easy-to-perform scale for predicting the risk of sICH and outcome after intravenous r-tPA thrombolysis within 4.5 h in patients with ischemic stroke, and risk assessment using this test has the potential for early and personalized management of this disease in high-risk patients.

20.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368308

RESUMO

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...